48V Input – 34VDC – 3A Output

GLDW34V03

GLDW34V03 - 1/4 Brick Dorado HV

- Industry standard pinout and footprint
- High efficiency: 87% at 34V, 3A; 89% at 34V, 1.5A
- Droop feature allows current sharing
- Very low common-mode noise for a commercial DC/DC converter
- Two-stage input filter
- Constant switching frequency
- Remote sense
- Single board design
- Optional low profile heat sink for improved thermal performance
- Header with M3 metal inserts for mechanical connection to PCB

Control Functions

- Compatible with fan turn-on requirements
- Designed to be stable with high capacitance load
- Uses innovative control and power topology for lower parts count
- Microprocessor controlled
- Primary-side enable, choice of logic

Protection Features

- Over temperature protection
- Over voltage protection
- Over current protection
- Over/Under input voltage protection

Typical Characteristics

- Output setpoint accuracy: ± 0.2%
- Load regulation: 0.77V/A untrimmed
- Line regulation: ± 0.2%
- Low output ripple
- Output trim

Certified to ISO 9001:2000

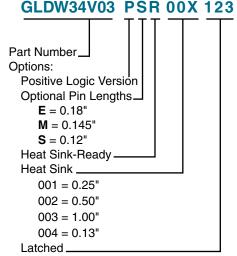
Ordering Information

Standard Model Number	Input Voltage	Output Voltage	Max Current
GLDW34V03*	48V	34V	3A

* Options:

P = Positive Logic Version; $\mathbf{E} = 0.18$ " Pins $(\pm .01$ ") $\mathbf{S} = 0.12$ " Pins $(\pm .01$ ") High = On $\mathbf{M} = 0.145$ " Pins $(\pm .01$ ") $\mathbf{R} = \text{Heat Sink-Ready}$

Dorado HV Heat Sink Part Numbers


		Typical Thermal Performance		
Part Number	Height	Natural Convection Power Dissipation [†]	Forced Convection Thermal Resistance [‡]	
001	0.25"	5W	5.8° C/W	
002	0.50"	7W	3.2° C/W	
003	1.00"	11W	2.0° C/W	
004	0.13"	TBD	TBD	

† @ 60° C rise heat sink to ambient

‡ @ 300'/min.

Example Part Number:

(All options)

OVP and OTP latch immediately OCP latches after 3 seconds

48V Input - 34VDC - 3A Output

GLDW34V03

Input Specifications

Parameter	Min	Typical	Max	Units
Operating Input Voltage	36	48	75	V _{DC}
Input Current			4	Α
Input Capacitance		2		μF
Maximum Turn-on Voltage			35.5	V
Minimum Turn-on Voltage	30.0			V
Input Hysteresis, Low Line		2		V _{DC}

 $V_{IN} = 48V_{DC}$, $T_A@25^\circ$ C, 300 LFM Airflow, $V_{OUT} = 34V_{DC}$, $I_{OUT} = 68\mu$ F electrolytic capacitor across output pins. Available output power depends on ambient temperature and good thermal management. (See application graphs for limits.)

Output Specifications

Parameter	Min	Typical	Max	Units
Output Voltage/Trim Range ¹	16.5		35.5	V _{DC}
Remote Sense Compensation			1	V
Regulation Over Line, Load & Temperature	97		103	%V _{NOM}
Voltage Ripple			30	mV _{RMS}
Current Range – Trimmed to 26V	0		3.6	А
Current Range – Untrimmed	0		3	А
Current Limit Inception ²	110	130		%lout
Turn-on Time to 98% Vnom			400	mS
Output Overshoot at Turn-on			1	%V _{OUT}
Over Voltage Protection		115		%V _{OUT}

^{1.} Trimming is realized by connecting an external resistor between "trim" pin and "-sense" pin. See graph and formula on page 4.

^{2.} Current limit inception is output voltage dependent. See Current Limit Graph on page 5.

48V Input – 34VDC – 3A Output

GLDW34V03

Isolation Specifications

Parameter	Min	Typical	Max	Units
Isolation Test Voltage, Input/Baseplate/Output (Basic)	2000			V _{DC}
Isolation Resistance	10			МΩ

Features

Parameter	Min	Typical	Max	Units
Over Temperature Protection, Thermal Sensor ³			117	° C
Switching Frequency, Fixed		333		kHz

^{3.} PCB less than 130° C.

General Specifications

Operating Temperature	-40° C to + 100° C
Storge Temperature	-55° C + 125° C
Relative Humidity	10% to 95% RH, Non-condensing
Vibration	2 to 9 Hz, 3mm disp., 9 to 200 Hz, 1g
Material Flammability	UL V-0
Weight	35 grams
MTBF Telcordia (Bellcore)	1.6 million hours

Approvals and Standards

UL and c-UL Recognized Component, TUV, UL60950, CSA 22.2 No. 950, IEC/EN 60950**

EMC Characteristics:

Designed to meet emission and immunity requirements per EN55022, CISPR 22, Class B, and CISPR 24.

^{**} An external fuse shall be used to comply with the requirements.

48V Input - 34VDC - 3A Output

GLDW34V03

Application Notes

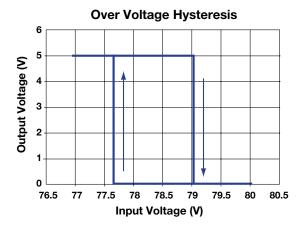
CoolConverter[™]

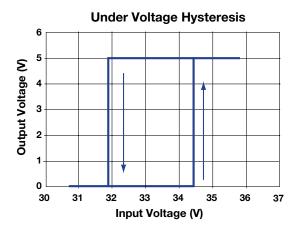
Bel Power's Proprietary CoolConverter™

- Patented single-stage power conversion architecture, control and magnetic design allow unprecedented power density and efficiency in an isolated power supply.
- An advanced microcontroller reduces parts count while adding features, performance and flexibility in the design.
- Low common-mode noise as a result of lower capacitance in the transformer compared to planar magnetics and metal baseplate designs.
- Higher reliability than planar transformer designs that can suffer from via fatigue from thermal cycling, and metal baseplate designs with board to board interconnects that are subject to mechanical stress on electrical connections.

Protection and Control

Valid Input Voltage Range


The converter measures the input voltage and will not allow operation outside of the input voltage specification. As shown by the graphs, hysteresis is added to both the high and low voltage to prevent the converter from turning on and off repeatedly when the voltage is held near either voltage extreme. At low line, this assures the maximum input current is not exceeded; at high line, this assures the semiconductor devices in the converter are not damaged by excessive voltage stress.


ON/OFF Logic Option

The ON/OFF control logic can be either Negative (standard) or Positive to enable the converter. For Negative logic, the ON/OFF pin is brought to below 1.0V with respect to the –INPUT pin to enable the converter. The pull-down must be able to sink 100 μ A. For Positive logic, the ON/OFF pin is brought to greater than 4.0V with respect to the –INPUT pin and be limited to less than 10V. To request the Positive logic version, add the suffix (P) to the standard part number. The ON/OFF pin has a built-in pull-up resistor of approximately $100 k\Omega$ to +5V.

Output Over Voltage Protection

The output voltage is monitored by a redundant secondaryside circuit. If the ouput voltage exceeds the over voltage specification, the microprocessor will restart every 2 seconds and limit voltage with a separate reference circuit. This advanced feature prevents the converter from damaging the load if there is a converter failure or application error. Latching is available as an option.

48V Input – 34VDC – 3A Output

GLDW34V03

CoolConverter[™]

Protection and Control

Over Current Protection

If over current lasts more than 2 seconds the converter will shut down and try to restart every 10 seconds until the fault is removed. Latching is available as an option.

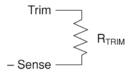
Thermal Shutdown

The printed circuit board temperature is measured using a semiconductor sensor. If the maximum rated temperature is exceeded, the converter is latched off. To re-enable the converter requires cycling the ON/OFF pin or power to the converter. If non-latching shutdown is required, consult factory.

Remote Sense

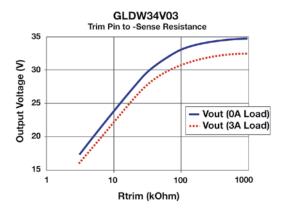
The output voltage is regulated at the point where the sense pins connect to the power output pins. Total sense compensation should not exceed 0.4V or 2% of Vout, whichever is greater.

Sharing

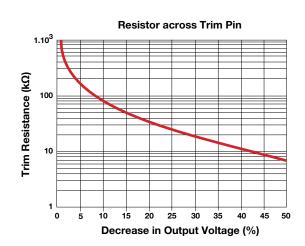

Two modules can passively share a common load of 2 - 6A at 60/40% maximum imbalance with diode ORing when their output voltages are controlled with a common control on the trim pins, from 17V to 32V output range.

Safety

An external input fuse must always be used to meet these safety requirements.


External Output Trimming

Resistor

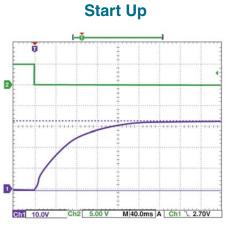

Trim-up

$$R_{TRIM-UP} = \left\{ \begin{array}{ll} 6.2 V \text{OUT (V)} \\ \hline 14.02 \; (2.5 \text{ - } 0.055 \; \text{IOUT (A)} - V \text{OUT (V)} \end{array} \right\} - 3 \; k\Omega \end{array}$$

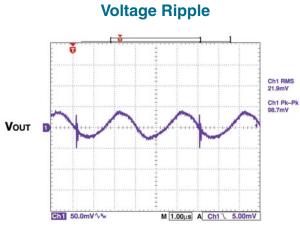
Trim-down

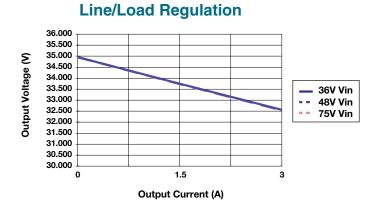
$$R_{TRIM\text{-DOWN}} \ = \left\{ \frac{100}{\Delta\%} \ -2 \ \right\} \ k\Omega$$

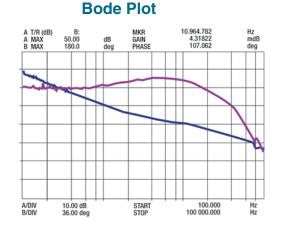




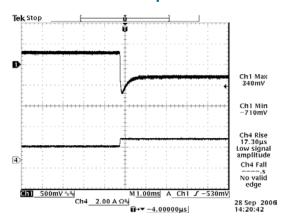
48V Input - 34VDC - 3A Output


GLDW34V03

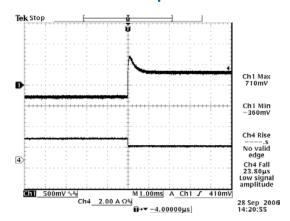




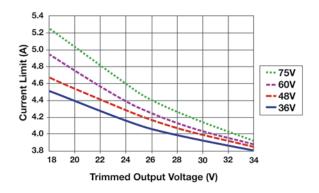
1. VOUT 50mV/div 1µS/div



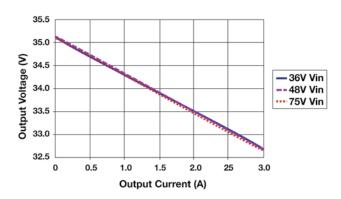
48V Input – 34VDC – 3A Output


GLDW34V03

Transient Response


50% to 75% Load Transients at $V_{IN} = 48V@T_A = 25$ °C

Transient Response



75% to 50% Load Transients at $V_{IN} = 48V@T_A = 25$ °C

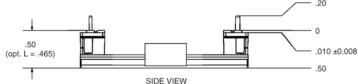
Current Limit vs. Line/Trim Voltage

Setpoint vs. Line/Load

48V Input - 34VDC - 3A Output

GLDW34V03

Mechanical


GLDW34V03

Pin Configuration - Bottom View

Pin	Function	Pin Dia. (In.)
1	– Input	0.040
2	On/Off	0.040
3	+ Input	0.040
4	+ Output	0.060
5	+ Sense	0.040
6	Trim	0.040
7	– Sense	0.040*
8	Output	0.060

^{*} Connected to -Output internally.

Notes:

- 1. Mechanical tolerances x.xxx in. = \pm 0.005 in. x.xx in = \pm 0.01 in.
- 2. Pin material: Brass with tin/lead plating over nickel
- 3. Workmanship: Meets or exceeds IPC-A-610B Class II
- 4. A'' = 0.040 dia. pins
- 5. "B" = 0.060" dia. pins

RoHS Compliance

Complies with the European Directive 2002/95/EC, calling for the elimination of lead and other hazardous substances from electronic products. These parts are not however compatible with the higher temperatures associated with lead free solder processes and must be soldered using a reflow profile with a peak temperature of no more than 240°C.

©2006 Bel Fuse Inc. Specifications subject to change without notice. 11.06

CORPORATE

Bel Fuse Inc. 206 Van Vorst Street Jersey City, NJ 07302 Tel 201-432-0463 Fax 201-432-9542 www.belfuse.com

FAR EAST

Bel Fuse Ltd. 8F / 8 Luk Hop Street San Po Kong Kowloon, Hong Kong Tel 852-2328-5515 Fax 852-2352-3706 www.belfuse.com

EUROPE

Bel Fuse Europe Ltd.
Preston Technology Management Centre
Marsh Lane, Suite G7, Preston
Lancashire, PR1 8UD, U.K.
Tel 44-1772-556601

Fax 44-1772-888366 www.belfuse.com